Final exam (online) — Functional Analysis (WIFA–08)

Monday 6 April 2020, 18.45h–21.45h CEST (plus 30 minutes for uploading)

University of Groningen

Instructions

- 1. Only references to the lecture notes and slides are allowed. References to other sources are not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the exam grade is G = 1 + p/10.
- 4. Write both your name and student number on the answer sheets!
- 5. This exam comes in two versions. Both versions consist of five problems of equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.

For example, if your student number is 1277456, which is even, then you have to make version 2.

6. Upload your work as a single PDF file in your personal Nestor dropbox folder.

Version 1 (for odd student numbers)

Problem 1 (5 + 10 + 10 = 25 points)

A function $f : [0,1] \to \mathbb{K}$ is called *Lipschitz-continuous* if there exists a constant $c \ge 0$, which may depend on f, such that

$$|f(x) - f(y)| \le c|x - y|$$
 for all $x, y \in [0, 1]$.

Denote the set of all such functions by $\mathcal{L}([0,1],\mathbb{K})$. Clearly, $\mathcal{L}([0,1],\mathbb{K}) \subset \mathcal{C}([0,1],\mathbb{K})$.

- (a) Show that $\mathcal{L}([0,1],\mathbb{K})$ is a linear subspace of $\mathcal{C}([0,1],\mathbb{K})$.
- (b) For $f \in \mathcal{L}([0,1], \mathbb{K})$ we define

$$||f||_{\mathcal{L}} = |f(0)| + \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y\right\}.$$

Prove that $\|\cdot\|_{\mathcal{L}}$ is a norm on $\mathcal{L}([0,1],\mathbb{K})$.

(c) Is the norm $\|\cdot\|_{\mathcal{L}}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem 2 (5 + 10 + 10 + 5 = 30 points)

Equip the space $\mathcal{C}([-1,1],\mathbb{K})$ with the norm $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$, and consider the following linear operator:

$$T: \mathfrak{C}([-1,1],\mathbb{K}) \to \mathfrak{C}([-1,1],\mathbb{K}), \quad Tf(x) = f(|x|).$$

- (a) Compute the operator norm of T.
- (b) Show that $\lambda = 0$ and $\lambda = 1$ are eigenvalues of T.
- (c) Prove that if $\lambda \notin \{0, 1\}$, then $\lambda \in \rho(T)$.
- (d) Is T compact?

Problem 3 (10 points)

It is given that for all $f \in \mathcal{C}([0,\pi],\mathbb{K})$ the following boundary value problem has a unique solution $u \in \mathcal{C}^2([0,\pi],\mathbb{K})$:

$$u''(x) + u(x) = f(x), \quad 0 < x < \pi, \quad u(0) = u'(\pi) = 0.$$

Prove that there exists a constant $C \ge 0$ such that

$$||u||_{\infty} + ||u'||_{\infty} + ||u''||_{\infty} \le C||f||_{\infty},$$

where $\|\cdot\|_{\infty}$ denotes the usual supremum-norm on $\mathcal{C}([0,\pi],\mathbb{K})$.

Hint: you may use without proof that the space

$$X = \left\{ u \in \mathcal{C}^2([0,\pi],\mathbb{K}) \, : \, u(0) = u'(\pi) = 0 \right\}$$

equipped with the norm $||u||_2 = ||u||_{\infty} + ||u'||_{\infty} + ||u''||_{\infty}$ is a Banach space.

$$-$$
 Page 2 of 17 $-$

Problem 4 (10 + 5 = 15 points)

- (a) Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent:
 - (i) T is bounded;
 - (ii) if (x_n) is a sequence in X such that $x_n \to 0$ and $Tx_n \to y$, then y = 0.
- (b) Now assume that X is a Hilbert space over \mathbb{C} and that the linear operator $T: X \to X$ satisfies the following property:

$$(Tx, z) = (x, Tz)$$
 for all $x, z \in X$,

where (\cdot, \cdot) denotes the innerproduct on X. Use part (a) to prove that T is bounded.

Problem 5 (10 points)

On the linear space \mathbb{R}^2 we take the following norm:

$$||x||_1 = |x_1| + |x_2|, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$

Consider the following linear maps:

 $f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x) = 7x_1 - 3x_2 \quad \text{and} \quad g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x) = 7x_1 + 5x_2.$

Show that:

(i) ||f|| = ||g||, but $f \neq g$;

(ii) there exists a nontrivial subspace $V \subset \mathbb{R}^2$ such that f(x) = g(x) for all $x \in V$.

Discuss the implication for the Hahn-Banach Theorem.

End of test ("version 1", 90 points)

Version 2 (for even student numbers)

Problem 1 (5 + 10 + 10 = 25 points)

A function $f : [0,1] \to \mathbb{K}$ is called *Lipschitz-continuous* if there exists a constant $c \ge 0$, which may depend on f, such that

$$|f(x) - f(y)| \le c|x - y|$$
 for all $x, y \in [0, 1]$.

Denote the set of all such functions by $\mathcal{L}([0,1],\mathbb{K})$. Clearly, $\mathcal{L}([0,1],\mathbb{K}) \subset \mathcal{C}([0,1],\mathbb{K})$.

- (a) Show that $\mathcal{L}([0,1],\mathbb{K})$ is a linear subspace of $\mathcal{C}([0,1],\mathbb{K})$.
- (b) For $f \in \mathcal{L}([0,1], \mathbb{K})$ we define

$$||f||_{\mathcal{L}} = |f(0)| + \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y\right\}.$$

Prove that $\|\cdot\|_{\mathcal{L}}$ is a norm on $\mathcal{L}([0,1],\mathbb{K})$.

(c) Is the norm $\|\cdot\|_{\mathcal{L}}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem 2 (5 + 10 + 10 + 5 = 30 points)

Equip the space $\mathcal{C}([-1,1],\mathbb{K})$ with the norm $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$, and consider the following linear operator:

 $T: \mathcal{C}([-1,1],\mathbb{K}) \to \mathcal{C}([-1,1],\mathbb{K}), \quad Tf(x) = f(x) + f(-x).$

- (a) Compute the operator norm of T.
- (b) Show that $\lambda = 0$ and $\lambda = 2$ are eigenvalues of T.
- (c) Prove that if $\lambda \notin \{0, 2\}$, then $\lambda \in \rho(T)$.
- (d) Is T compact?

Problem 3 (10 points)

It is given that for all $f \in \mathcal{C}([0,1],\mathbb{K})$ the following initial value problem has a unique solution $u \in \mathcal{C}^1([0,1],\mathbb{K})$:

$$u'(x) + 2x \cdot u(x) = f(x), \quad 0 < x < 1, \quad u(0) = 0.$$

Prove that there exists a constant $C \ge 0$ such that

$$||u||_{\infty} + ||u'||_{\infty} \le C ||f||_{\infty},$$

where $\|\cdot\|_{\infty}$ denotes the usual supremum-norm on $\mathcal{C}([0,1],\mathbb{K})$.

Hint: you may use without proof that the space

$$X = \left\{ u \in \mathcal{C}^1([0,1],\mathbb{K}) : u(0) = 0 \right\}$$

equipped with the norm $||u||_1 = ||u||_{\infty} + ||u'||_{\infty}$ is a Banach space.

$$-$$
 Page 4 of 17 $-$

Problem 4 (10 + 5 = 15 points)

- (a) Let X and Y be Banach spaces, and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent:
 - (i) T is bounded;
 - (ii) if (x_n) is a sequence in X such that $x_n \to 0$ and $Tx_n \to y$, then y = 0.
- (b) Now assume that X is a Hilbert space over \mathbb{C} and that the linear operator $T: X \to X$ satisfies the following property:

 $|(Tx, z)| \le ||x|| ||z|| \quad \text{for all} \quad x, z \in X,$

where (\cdot, \cdot) denotes the innerproduct on X. Use part (a) to prove that T is bounded.

Problem 5 (10 points)

On the linear space \mathbb{R}^2 we take the following norm:

$$||x||_{\infty} = \max\{|x_1|, |x_2|\}, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$

Consider the following linear maps:

 $f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x) = 5x_1 + 3x_2 \quad \text{and} \quad g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x) = 3x_1 + 5x_2.$

Show that:

(i) ||f|| = ||g||, but $f \neq g$;

(ii) there exists a nontrivial subspace $V \subset \mathbb{R}^2$ such that f(x) = g(x) for all $x \in V$. Discuss the implication for the Hahn-Banach Theorem.

End of test ("version 2", 90 points)

Solution of problem 1, version 1 and 2 (5 + 10 + 10 = 25 points)

(a) Let $f, g \in \mathcal{L}([0, 1], \mathbb{K})$ and $\lambda \in \mathbb{K}$. There exist constants $c, d \geq 0$ such that

$$\begin{aligned} |(f+g)(x) - (f+g)(y)| &= |f(x) + g(x) - f(y) - g(y)| \\ &\leq |f(x) - f(y)| + |g(x) - g(y)| \\ &\leq c|x - y| + d|x - y| \\ &= (c+d)|x - y|, \end{aligned}$$

which shows that $f + g \in \mathcal{L}([0, 1], \mathbb{K})$. (3 points)

In addition,

$$|(\lambda f)(x) - (\lambda f)(y)| = |\lambda| |f(x) - f(y)| \le c|\lambda| |x - y|,$$

which shows that $\lambda f \in \mathcal{L}([0,1],\mathbb{K})$. (2 points)

(b) It is clear that $||f||_{\mathcal{L}} \ge 0$ for all $f \in \mathcal{L}([0,1], \mathbb{K})$. Conversely, if $||f||_{\mathcal{L}} = 0$, then f(0) = 0 and

$$\frac{f(x) - f(y)|}{|x - y|} = 0 \text{ for all } x, y \in [0, 1] \text{ and } x \neq y,$$

so that f(x) = f(y) for all $x, y \in [0, 1]$. In particular, f(x) = f(0) = 0 for all $x \in [0, 1]$.

(2 points)

If $f \in \mathcal{L}([0,1], \mathbb{K})$ and $\lambda \in \mathbb{K}$, then

$$\begin{aligned} \|\lambda f\|_{\mathcal{L}} &= |\lambda f(0)| + \sup\left\{\frac{|\lambda f(x) - \lambda f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y\right\} \\ &= |\lambda| |f(0)| + \sup\left\{|\lambda| \cdot \frac{|f(x) - f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y\right\} \\ &= |\lambda| |f(0)| + |\lambda| \sup\left\{\frac{|f(x) - f(y)|}{|x - y|} : x, y \in [0, 1], x \neq y\right\} \\ &= |\lambda| ||f||_{\mathcal{L}}.\end{aligned}$$

(4 points)

Finally, if $f, g \in \mathcal{L}([0, 1], \mathbb{K})$ and $\lambda \in \mathbb{K}$, then

$$\begin{split} \|f+g\|_{\mathcal{L}} &= |f(0)+g(0)| + \sup\left\{\frac{|f(x)+g(x)-f(y)-g(y)|}{|x-y|} \,:\, x,y \in [0,1], x \neq y\right\} \\ &\leq |f(0)| + |g(0)| + \sup\left\{\frac{|f(x)-f(y)|}{|x-y|} + \frac{|g(x)-g(y)|}{|x-y|} \,:\, x,y \in [0,1], x \neq y\right\} \\ &\leq |f(0)| + |g(0)| + \sup\left\{\frac{|f(x)-f(y)|}{|x-y|} \,:\, x,y \in [0,1], x \neq y\right\} \\ &\quad + \sup\left\{\frac{|g(x)-g(y)|}{|x-y|} \,:\, x,y \in [0,1], x \neq y\right\} \\ &= \|f\|_{\mathcal{L}} + \|g\|_{\mathcal{L}}. \end{split}$$

(4 points)

(b) Define a sequence of functions $f_n: [0,1] \to \mathbb{K}$ by

$$f_n(x) = \begin{cases} nx & \text{if } x \in [0, \frac{1}{n}], \\ 1 & \text{if } x \in (\frac{1}{n}, 1]. \end{cases}$$

Note that

$$\frac{|f_n(x) - f_n(y)|}{|x - y|} = \begin{cases} n & \text{if } x, y \in [0, \frac{1}{n}] \text{ and } x \neq y, \\ \frac{|nx - 1|}{|x - y|} = n \cdot \frac{|x - \frac{1}{n}|}{|x - y|} < n & \text{if } x \in [0, \frac{1}{n}], y \in (\frac{1}{n}, 1], \\ 0 & \text{if } x, y \in [\frac{1}{n}, 1] \text{ and } x \neq y. \end{cases}$$

Therefore, $||f_n||_{\mathcal{L}} = n$ for all $n \in \mathbb{N}$. (7 points)

On the other hand, $||f_n||_{\infty} = 1$ for all $n \in \mathbb{N}$. Hence, there is no constant C > 0 such that $||f||_{\mathcal{L}} \leq C||f||_{\infty}$ for all $f \in \mathcal{L}([0,1],\mathbb{K})$, which implies that the norms $||\cdot||_{\mathcal{L}}$ and $||\cdot||_{\infty}$ are not equivalent. (3 points)

Solution of problem 2, version 1 (5 + 10 + 10 + 5 = 30 points)

(a) For any $f \in \mathcal{C}([-1,1],\mathbb{K})$ we have that

$$||Tf||_{\infty} = \sup_{x \in [-1,1]} |f(|x|)| = \sup_{x \in [0,1]} |f(x)| \le \sup_{x \in [-1,1]} |f(x)| = ||f||_{\infty}.$$

(3 points)

Now take $f \in \mathcal{C}([-1,1],\mathbb{K})$ such that f(x) = 1 for all $x \in [-1,1]$. Then $||f||_{\infty} = 1$ and $||Tf||_{\infty} = 1$. We conclude that the operator norm of T is given by

$$||T|| = \sup_{f \in \mathcal{C}([-1,1],\mathbb{K}), f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} = 1.$$

(2 points)

(b) We have that Tf = 0 if and only if

$$f(|x|) = 0 \quad \text{for all} \quad x \in [-1, 1],$$

or, equivalently,

$$f(x) = 0 \quad \text{for all} \quad x \in [0, 1].$$

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function

$$f(x) = \begin{cases} x & \text{if } x < 0, \\ 0 & \text{if } x \ge 0. \end{cases}$$

We conclude that $\lambda = 0$ is an eigenvalue of T. (3 points)

We have that Tf = f if and only if

$$f(|x|) = f(x)$$
 for all $x \in [-1, 1]$.

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function $f(x) = x^2$. We conclude that $\lambda = 1$ is an eigenvalue of T. (3 points)

(c) Assume that $\lambda \notin \{0, 1\}$. If $(T - \lambda)f = g$, then

$$f(|x|) - \lambda f(x) = g(x) \text{ for all } x \in [-1, 1],$$

or, equivalently,

$$\begin{cases} f(x) - \lambda f(x) = g(x) & \text{if } 0 \le x \le 1, \\ f(-x) - \lambda f(x) = g(x) & \text{if } -1 \le x < 0. \end{cases}$$

Solving for f gives

$$f(x) = (T - \lambda)^{-1} g(x)$$
 if $0 \le x \le 1$,
$$:= \begin{cases} \frac{1}{1 - \lambda} g(x) & \text{if } 0 \le x \le 1, \\ \frac{1}{\lambda} \left(-g(x) + f(-x) \right) = -\frac{1}{\lambda} g(x) + \frac{1}{\lambda(1 - \lambda)} g(-x) & \text{if } -1 \le x < 0. \end{cases}$$

— Page 8 of 17 —

(5 points)

For all $x \in [0, 1]$ it follows that

$$|(T-\lambda)^{-1}g(x)| \le \begin{cases} \frac{1}{|1-\lambda|} \|g\|_{\infty} & \text{if } 0 \le x \le 1, \\ \frac{1}{|\lambda|} \|g\|_{\infty} + \frac{1}{|\lambda(1-\lambda)|} \|g\|_{\infty} & \text{if } -1 \le x < 0. \end{cases}$$

so that

$$||(T - \lambda)^{-1}g(x)||_{\infty} \le C||g||_{\infty},$$

where

$$C = \max\left\{\frac{1}{|1-\lambda|}, \frac{1}{|\lambda|} + \frac{1}{|\lambda(1-\lambda)|}\right\}.$$

Therefore, $(T - \lambda)^{-1}$ is bounded and hence $\lambda \in \rho(T)$. (5 points)

Alternative argument. Since $T - \lambda$ is bijective and $\mathcal{C}([-1, 1], \mathbb{K})$ is a Banach space, it follows by a corollary of the Open Mapping Theorem that $(T - \lambda)^{-1}$ is bounded. Therefore, $\lambda \in \rho(T)$. (5 points)

(d) Recall the following result: if T is compact, then for any eigenvalue $\lambda \neq 0$ the corresponding eigenspace ker $(T - \lambda)$ is finite-dimensional.

For $\lambda = 1$ we have that

span {
$$x^{2n}$$
 : $n \in \mathbb{N}$ } $\subset \ker (T - \lambda)$,

which shows that ker $(T - \lambda)$ is *not* finite-dimensional. We conclude that T is not compact.

(5 points; only 4 points when argument is given for $\lambda = 0$)

Note. It is important that the argument is given for $\lambda = 1$. It is easy to give an example of a compact operator T for which ker T is infinite-dimensional.

Solution of problem 2, version 2 (5 + 10 + 10 + 5 = 30 points)

(a) For any $f \in \mathcal{C}([-1,1],\mathbb{K})$ we have that

$$||Tf||_{\infty} = \sup_{x \in [-1,1]} |f(x) + f(-x)| \le \sup_{x \in [-1,1]} |f(x)| + \sup_{x \in [-1,1]} |f(-x)| = 2||f||_{\infty}.$$

(3 points)

Now take $f \in \mathcal{C}([-1,1],\mathbb{K})$ such that f(x) = 1 for all $x \in [-1,1]$. Then $||f||_{\infty} = 1$ and $||Tf||_{\infty} = 2$. We conclude that the operator norm of T is given by

$$||T|| = \sup_{f \in \mathcal{C}([-1,1],\mathbb{K}), f \neq 0} \frac{||Tf||_{\infty}}{||f||_{\infty}} = 2.$$

(2 points)

(b) We have that Tf = 0 if and only if

$$f(x) + f(-x) = 0$$
 for all $x \in [-1, 1]$.

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function f(x) = x. We conclude that $\lambda = 0$ is an eigenvalue of T. (3 points)

We have that Tf = 2f if and only if

$$f(x) + f(-x) = 2f(x)$$
 for all $x \in [-1, 1]$,

or, equivalently,

$$f(x) = f(-x)$$
 for all $x \in [-1, 1]$.

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function $f(x) = x^2$. We conclude that $\lambda = 2$ is an eigenvalue of T. (3 points)

(c) Assume that $\lambda \notin \{0, 2\}$. If $(T - \lambda)f = g$, then

$$(1 - \lambda)f(x) + f(-x) = g(x)$$
 for all $x \in [-1, 1]$.

Replacing x by -x gives the equation

$$f(x) + (1 - \lambda)f(-x) = g(-x)$$
 for all $x \in [-1, 1]$.

Therefore, for any $x \in [-1, 1]$ can find f(x) by solving the following system:

$$\begin{pmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{pmatrix} \begin{pmatrix} f(x)\\ f(-x) \end{pmatrix} = \begin{pmatrix} g(x)\\ g(-x) \end{pmatrix}$$

•

There is a unique solution if and only if $\lambda \notin \{0, 2\}$. In that case, we find that

$$f(x) = \frac{1-\lambda}{\lambda(\lambda-2)}g(x) - \frac{1}{\lambda(\lambda-2)}g(-x).$$

- Page 10 of 17 -

(5 points)

For all $x \in [-1, 1]$ it follows that

$$|(T-\lambda)^{-1}g(x)| = \left|\frac{1-\lambda}{\lambda(\lambda-2)}\right||g(x)| + \left|\frac{1}{\lambda(\lambda-2)}\right||g(-x)| \le C||g||_{\infty},$$

where

$$C = \left| \frac{1 - \lambda}{\lambda(\lambda - 2)} \right| + \left| \frac{1}{\lambda(\lambda - 2)} \right|.$$

Therefore,

$$||(T - \lambda)^{-1}g(x)||_{\infty} \le C||g||_{\infty},$$

which means that $(T - \lambda)^{-1}$ is bounded and hence $\lambda \in \rho(T)$. (5 points)

Alternative argument. Since $T - \lambda$ is bijective and $\mathcal{C}([-1, 1], \mathbb{K})$ is a Banach space, it follows by a corollary of the Open Mapping Theorem that $(T - \lambda)^{-1}$ is bounded. Therefore, $\lambda \in \rho(T)$. (5 points)

(d) Recall the following result: if T is compact, then for any eigenvalue $\lambda \neq 0$ the corresponding eigenspace ker $(T - \lambda)$ is finite-dimensional.

For $\lambda = 2$ we have that

span {
$$x^{2n}$$
 : $n \in \mathbb{N}$ } $\subset \ker (T - \lambda)$,

which shows that ker $(T - \lambda)$ is *not* finite-dimensional. We conclude that T is not compact.

(5 points; only 4 points when argument is given for $\lambda = 0$)

Note. It is important that the argument is given for $\lambda = 1$. It is easy to give an example of a compact operator T for which ker T is infinite-dimensional.

Solution of problem 3, version 1 (10 points)

Define the following linear operator

$$T: X \to \mathcal{C}([0,\pi],\mathbb{K}), \quad Tu = u'' + u.$$

Note that T is bounded:

$$||Tu||_{\infty} = \sup_{x \in [0,\pi]} |u''(x) + u(x)|$$

$$\leq ||u''||_{\infty} + ||u||_{\infty}$$

$$\leq ||u||_{2}.$$

(3 points)

Since the spaces $(X, \|\cdot\|_2)$ and $(\mathcal{C}([0, \pi], \mathbb{K}), \|\cdot\|_{\infty})$ are Banach spaces and it is given that T is bijective, it follows by a corollary of the Open Mapping Theorem that the operator $T^{-1} : \mathcal{C}([0, \pi], \mathbb{K}) \to X$ is bounded. This means that there exists a constant $C \ge 0$ such that

$$||T^{-1}f||_2 \le C ||f||_{\infty}$$

for all $f \in \mathcal{C}([0,\pi],\mathbb{K})$. (5 points)

Finally, note that u is a solution of the given boundary value problem if and only if Tu = f, or, equivalently, $u = T^{-1}f$. The boundedness of T^{-1} now gives the desired inequality:

$$||u||_{\infty} + ||u'||_{\infty} + ||u''||_{\infty} = ||u||_{2} = ||T^{-1}f||_{2} \le C||f||_{\infty}.$$

Solution of problem 3, version 2 (10 points)

Define the following linear operator

$$T: X \to \mathcal{C}([0,1], \mathbb{K}), \quad Tu = u' + 2xu.$$

Note that T is bounded:

$$\|Tu\|_{\infty} = \sup_{x \in [0,1]} |u'(x) + 2x u(x)|$$

$$\leq \|u'\|_{\infty} + 2\|u\|_{\infty}$$

$$\leq 2\|u\|_{1}.$$

(3 points)

Since the spaces $(X, \|\cdot\|_1)$ and $(\mathcal{C}([0, 1], \mathbb{K}), \|\cdot\|_{\infty})$ are Banach spaces and it is given that T is bijective, it follows by a corollary of the Open Mapping Theorem that the operator $T^{-1} : \mathcal{C}([0, 1], \mathbb{K}) \to X$ is bounded. This means that there exists a constant $C \ge 0$ such that

$$||T^{-1}f||_1 \le C ||f||_{\infty}$$

for all $f \in \mathcal{C}([0,1],\mathbb{K})$. (5 points)

Finally, note that u is a solution of the given initial value problem if and only if Tu = f, or, equivalently, $u = T^{-1}f$. The boundedness of T^{-1} now gives the desired inequality:

$$|u||_{\infty} + ||u'||_{\infty} = ||u||_{1} = ||T^{-1}f||_{1} \le C||f||_{\infty}.$$

Solution of problem 4, version 1 (10 + 5 = 15 points)

(a) Proof of $(i) \Rightarrow (ii)$. Assume that T is bounded. Let (x_n) be a sequence such that $x_n \to 0$ and $Tx_n \to y$. Then it follows that

$$||y|| = ||y - Tx_n + Tx_n|| \le ||y - Tx_n|| + ||Tx_n|| \le ||y - Tx_n|| + ||T|| ||x_n||.$$

Since the right-hand side tends to zero, it follows that y = 0. (5 points)

Proof of $(ii) \Rightarrow (i)$. Assume that $x_n \to x$ and $Tx_n \to y$. Introduce the new sequence $z_n = x_n - x$. Then it follows that $z_n \to 0$ and $Tz_n \to y - Tx$. By assumption it follows that y - Tx = 0 so that y = Tx. We conclude that the graph of T is closed. Since X and Y are Banach spaces we can apply the Closed Graph Theorem with V = X to conclude that T is bounded. (5 points)

(b) Let $z \in X$ be arbitrary, and let (x_n) be a sequence in X such that $x_n \to 0$ and $Tx_n \to y$. On the one hand, we have that

$$(Tx_n, z) = (x_n, Tz) \to 0.$$

On the other hand, we have that

$$(Tx_n, z) \to (y, z).$$

(3 points)

By uniqueness of limits, we conclude that (y, z) = 0. Since $z \in X$ was arbitrary, it follows that $y \in X^{\perp} = \{0\}$ so that y = 0. By part (a) we conclude that T is bounded.

Solution of problem 4, version 2 (10 + 5 = 15 points)

- (a) Identical to version 1.
- (b) Let $z \in X$ be arbitrary, and let (x_n) be a sequence in X such that $x_n \to 0$ and $Tx_n \to y$. On the one hand, we have that

$$|(Tx_n, z)| \le ||x_n|| \, ||z|| \to 0.$$

On the other hand, we have that

$$(Tx_n, z) \to (y, z).$$

(3 points)

By uniqueness of limits, we conclude that (y, z) = 0. Since $z \in X$ was arbitrary, it follows that $y \in X^{\perp} = \{0\}$ so that y = 0. By part (a) we conclude that T is bounded.

Solution of problem 5, version 1 (10 points)

For all $x = (x_1, x_2) \in \mathbb{R}^2$ we have that

$$|f(x)| = |7x_1 - 3x_2| \le 7|x_1| + 3|x_2| \le 7||x||_1,$$

$$|g(x)| = |7x_1 + 5x_2| \le 7|x_1| + 5|x_2| \le 7||x||_1.$$

For x = (1,0) we have $||x||_1 = 1$ and |f(x)| = |g(x)| = 7. We conclude that

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||_1} = 7$$
 and $||g|| = \sup_{x \neq 0} \frac{|g(x)|}{||x||_1} = 7.$

(4 points)

For x = (0, 1) we have that f(x) = -3 and g(x) = 5, so $f \neq g$. (1 point)

With $V = \text{span} \{(1,0)\}$ we have f(x) = g(x) for all $x \in V$. (1 point)

Define the linear map $h: V \to \mathbb{R}$ by h(x) = f(x). It easily follows that ||h|| = 7. Both f and g are norm preserving extensions of h. This implies that norm preserving extensions, of which the *existence* is guaranteed by the Hahn-Banach Theorem, need not be unique.

(4 points)

Solution of problem 5, version 2 (10 points)

For all $x = (x_1, x_2) \in \mathbb{R}^2$ we have that

$$|f(x)| = |5x_1 + 3x_2| \le 5|x_1| + 3|x_2| \le 8||x||_{\infty},$$

$$|g(x)| = |3x_1 + 5x_2| \le 3|x_1| + 5|x_2| \le 8||x||_{\infty}.$$

For x = (1, 1) we have $||x||_{\infty} = 1$ and |f(x)| = |g(x)| = 8. We conclude that

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||_{\infty}} = 8$$
 and $||g|| = \sup_{x \neq 0} \frac{|g(x)|}{||x||_{\infty}} = 8.$

(4 points)

For x = (1,0) we have that f(x) = 3 and g(x) = 5, so $f \neq g$. (1 point)

With $V = \text{span} \{(1, 1)\}$ we have f(x) = g(x) for all $x \in V$. (1 point)

Define the linear map $h: V \to \mathbb{R}$ by h(x) = f(x). It easily follows that ||h|| = 8. Both f and g are norm preserving extensions of h. This implies that norm preserving extensions, of which the *existence* is guaranteed by the Hahn-Banach Theorem, need not be unique.

(4 points)