Final exam (online) - Functional Analysis (WIFA-08)

Monday 6 April 2020, 18.45h-21.45h CEST (plus 30 minutes for uploading) University of Groningen

Instructions

1. Only references to the lecture notes and slides are allowed. References to other sources are not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.
3. If p is the number of marks then the exam grade is $G=1+p / 10$.
4. Write both your name and student number on the answer sheets!
5. This exam comes in two versions. Both versions consist of five problems of equal difficulty.

Make version 1 if your student number is odd.

Make version 2 if your student number is even.
For example, if your student number is 1277456 , which is even, then you have to make version 2.
6. Upload your work as a single PDF file in your personal Nestor dropbox folder.

Version 1 (for odd student numbers)

Problem $1(5+10+10=25$ points $)$
A function $f:[0,1] \rightarrow \mathbb{K}$ is called Lipschitz-continuous if there exists a constant $c \geq 0$, which may depend on f, such that

$$
|f(x)-f(y)| \leq c|x-y| \quad \text { for all } x, y \in[0,1]
$$

Denote the set of all such functions by $\mathcal{L}([0,1], \mathbb{K})$. Clearly, $\mathcal{L}([0,1], \mathbb{K}) \subset \mathcal{C}([0,1], \mathbb{K})$.
(a) Show that $\mathcal{L}([0,1], \mathbb{K})$ is a linear subspace of $\mathcal{C}([0,1], \mathbb{K})$.
(b) For $f \in \mathcal{L}([0,1], \mathbb{K})$ we define

$$
\|f\|_{\mathcal{L}}=|f(0)|+\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} .
$$

Prove that $\|\cdot\|_{\mathcal{L}}$ is a norm on $\mathcal{L}([0,1], \mathbb{K})$.
(c) Is the norm $\|\cdot\|_{\mathcal{L}}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem $2(5+10+10+5=30$ points $)$
Equip the space $\mathcal{C}([-1,1], \mathbb{K})$ with the norm $\|f\|_{\infty}=\sup _{x \in[-1,1]}|f(x)|$, and consider the following linear operator:

$$
T: \mathcal{C}([-1,1], \mathbb{K}) \rightarrow \mathcal{C}([-1,1], \mathbb{K}), \quad T f(x)=f(|x|)
$$

(a) Compute the operator norm of T.
(b) Show that $\lambda=0$ and $\lambda=1$ are eigenvalues of T.
(c) Prove that if $\lambda \notin\{0,1\}$, then $\lambda \in \rho(T)$.
(d) Is T compact?

Problem 3 (10 points)

It is given that for all $f \in \mathcal{C}([0, \pi], \mathbb{K})$ the following boundary value problem has a unique solution $u \in \mathfrak{C}^{2}([0, \pi], \mathbb{K})$:

$$
u^{\prime \prime}(x)+u(x)=f(x), \quad 0<x<\pi, \quad u(0)=u^{\prime}(\pi)=0 .
$$

Prove that there exists a constant $C \geq 0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty} \leq C\|f\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ denotes the usual supremum-norm on $\mathcal{C}([0, \pi], \mathbb{K})$.
Hint: you may use without proof that the space

$$
X=\left\{u \in \mathcal{C}^{2}([0, \pi], \mathbb{K}): u(0)=u^{\prime}(\pi)=0\right\}
$$

equipped with the norm $\|u\|_{2}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty}$ is a Banach space.

Problem $4(10+5=15$ points)

(a) Let X and Y be Banach spaces, and let $T: X \rightarrow Y$ be a linear operator. Prove that the following statements are equivalent:
(i) T is bounded;
(ii) if $\left(x_{n}\right)$ is a sequence in X such that $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$, then $y=0$.
(b) Now assume that X is a Hilbert space over \mathbb{C} and that the linear operator $T: X \rightarrow X$ satisfies the following property:

$$
(T x, z)=(x, T z) \quad \text { for all } \quad x, z \in X
$$

where (\cdot, \cdot) denotes the innerproduct on X. Use part (a) to prove that T is bounded.

Problem 5 (10 points)

On the linear space \mathbb{R}^{2} we take the following norm:

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

Consider the following linear maps:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=7 x_{1}-3 x_{2} \quad \text { and } \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad g(x)=7 x_{1}+5 x_{2} .
$$

Show that:
(i) $\|f\|=\|g\|$, but $f \neq g$;
(ii) there exists a nontrivial subspace $V \subset \mathbb{R}^{2}$ such that $f(x)=g(x)$ for all $x \in V$.

Discuss the implication for the Hahn-Banach Theorem.

Version 2 (for even student numbers)

Problem $1(5+10+10=25$ points $)$
A function $f:[0,1] \rightarrow \mathbb{K}$ is called Lipschitz-continuous if there exists a constant $c \geq 0$, which may depend on f, such that

$$
|f(x)-f(y)| \leq c|x-y| \quad \text { for all } x, y \in[0,1]
$$

Denote the set of all such functions by $\mathcal{L}([0,1], \mathbb{K})$. Clearly, $\mathcal{L}([0,1], \mathbb{K}) \subset \mathcal{C}([0,1], \mathbb{K})$.
(a) Show that $\mathcal{L}([0,1], \mathbb{K})$ is a linear subspace of $\mathcal{C}([0,1], \mathbb{K})$.
(b) For $f \in \mathcal{L}([0,1], \mathbb{K})$ we define

$$
\|f\|_{\mathcal{L}}=|f(0)|+\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} .
$$

Prove that $\|\cdot\|_{\mathcal{L}}$ is a norm on $\mathcal{L}([0,1], \mathbb{K})$.
(c) Is the norm $\|\cdot\|_{\mathcal{L}}$ equivalent to the sup-norm $\|\cdot\|_{\infty}$?

Problem $2(5+10+10+5=30$ points $)$
Equip the space $\mathcal{C}([-1,1], \mathbb{K})$ with the norm $\|f\|_{\infty}=\sup _{x \in[-1,1]}|f(x)|$, and consider the following linear operator:

$$
T: \mathcal{C}([-1,1], \mathbb{K}) \rightarrow \mathcal{C}([-1,1], \mathbb{K}), \quad T f(x)=f(x)+f(-x)
$$

(a) Compute the operator norm of T.
(b) Show that $\lambda=0$ and $\lambda=2$ are eigenvalues of T.
(c) Prove that if $\lambda \notin\{0,2\}$, then $\lambda \in \rho(T)$.
(d) Is T compact?

Problem 3 (10 points)

It is given that for all $f \in \mathcal{E}([0,1], \mathbb{K})$ the following initial value problem has a unique solution $u \in \mathcal{C}^{1}([0,1], \mathbb{K})$:

$$
u^{\prime}(x)+2 x \cdot u(x)=f(x), \quad 0<x<1, \quad u(0)=0
$$

Prove that there exists a constant $C \geq 0$ such that

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty} \leq C\|f\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ denotes the usual supremum-norm on $\mathcal{E}([0,1], \mathbb{K})$.
Hint: you may use without proof that the space

$$
X=\left\{u \in \mathcal{C}^{1}([0,1], \mathbb{K}): u(0)=0\right\}
$$

equipped with the norm $\|u\|_{1}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}$ is a Banach space.

Problem $4(10+5=15$ points)

(a) Let X and Y be Banach spaces, and let $T: X \rightarrow Y$ be a linear operator. Prove that the following statements are equivalent:
(i) T is bounded;
(ii) if $\left(x_{n}\right)$ is a sequence in X such that $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$, then $y=0$.
(b) Now assume that X is a Hilbert space over \mathbb{C} and that the linear operator $T: X \rightarrow X$ satisfies the following property:

$$
|(T x, z)| \leq\|x\|\|z\| \quad \text { for all } \quad x, z \in X
$$

where (\cdot, \cdot) denotes the innerproduct on X. Use part (a) to prove that T is bounded.

Problem 5 (10 points)

On the linear space \mathbb{R}^{2} we take the following norm:

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} .
$$

Consider the following linear maps:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x)=5 x_{1}+3 x_{2} \quad \text { and } \quad g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad g(x)=3 x_{1}+5 x_{2} .
$$

Show that:
(i) $\|f\|=\|g\|$, but $f \neq g$;
(ii) there exists a nontrivial subspace $V \subset \mathbb{R}^{2}$ such that $f(x)=g(x)$ for all $x \in V$.

Discuss the implication for the Hahn-Banach Theorem.

Solution of problem 1, version 1 and $2(5+10+10=25$ points)
(a) Let $f, g \in \mathcal{L}([0,1], \mathbb{K})$ and $\lambda \in \mathbb{K}$. There exist constants $c, d \geq 0$ such that

$$
\begin{aligned}
|(f+g)(x)-(f+g)(y)| & =|f(x)+g(x)-f(y)-g(y)| \\
& \leq|f(x)-f(y)|+|g(x)-g(y)| \\
& \leq c|x-y|+d|x-y| \\
& =(c+d)|x-y|
\end{aligned}
$$

which shows that $f+g \in \mathcal{L}([0,1], \mathbb{K})$.
(3 points)
In addition,

$$
|(\lambda f)(x)-(\lambda f)(y)|=|\lambda||f(x)-f(y)| \leq c|\lambda||x-y|,
$$

which shows that $\lambda f \in \mathcal{L}([0,1], \mathbb{K})$.
(2 points)
(b) It is clear that $\|f\|_{\mathcal{L}} \geq 0$ for all $f \in \mathcal{L}([0,1], \mathbb{K})$. Conversely, if $\|f\|_{\mathcal{L}}=0$, then $f(0)=0$ and

$$
\frac{|f(x)-f(y)|}{|x-y|}=0 \quad \text { for all } x, y \in[0,1] \text { and } x \neq y
$$

so that $f(x)=f(y)$ for all $x, y \in[0,1]$. In particular, $f(x)=f(0)=0$ for all $x \in[0,1]$.

(2 points)

If $f \in \mathcal{L}([0,1], \mathbb{K})$ and $\lambda \in \mathbb{K}$, then

$$
\begin{aligned}
\|\lambda f\|_{\mathcal{L}} & =|\lambda f(0)|+\sup \left\{\frac{|\lambda f(x)-\lambda f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
& =|\lambda||f(0)|+\sup \left\{|\lambda| \cdot \frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
& =|\lambda||f(0)|+|\lambda| \sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
& =|\lambda|\|f\|_{\mathcal{L}} .
\end{aligned}
$$

(4 points)
Finally, if $f, g \in \mathcal{L}([0,1], \mathbb{K})$ and $\lambda \in \mathbb{K}$, then

$$
\begin{aligned}
\|f+g\|_{\mathcal{L}}= & |f(0)+g(0)|+\sup \left\{\frac{|f(x)+g(x)-f(y)-g(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
\leq & |f(0)|+|g(0)|+\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}+\frac{|g(x)-g(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
\leq & |f(0)|+|g(0)|+\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
& \quad+\sup \left\{\frac{|g(x)-g(y)|}{|x-y|}: x, y \in[0,1], x \neq y\right\} \\
= & \|f\|_{\mathcal{L}}+\|g\|_{\mathcal{L}} .
\end{aligned}
$$

(4 points)
(b) Define a sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{K}$ by

$$
f_{n}(x)= \begin{cases}n x & \text { if } x \in\left[0, \frac{1}{n}\right] \\ 1 & \text { if } x \in\left(\frac{1}{n}, 1\right]\end{cases}
$$

Note that

$$
\frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|}= \begin{cases}n & \text { if } x, y \in\left[0, \frac{1}{n}\right] \text { and } x \neq y \\ \frac{|n x-1|}{|x-y|}=n \cdot \frac{\left|x-\frac{1}{n}\right|}{|x-y|}<n & \text { if } x \in\left[0, \frac{1}{n}\right], y \in\left(\frac{1}{n}, 1\right] \\ 0 & \text { if } x, y \in\left[\frac{1}{n}, 1\right] \text { and } x \neq y\end{cases}
$$

Therefore, $\left\|f_{n}\right\|_{\mathcal{L}}=n$ for all $n \in \mathbb{N}$.
(7 points)
On the other hand, $\left\|f_{n}\right\|_{\infty}=1$ for all $n \in \mathbb{N}$. Hence, there is no constant $C>0$ such that $\|f\|_{\mathcal{L}} \leq C\|f\|_{\infty}$ for all $f \in \mathcal{L}([0,1], \mathbb{K})$, which implies that the norms $\|\cdot\|_{\mathcal{L}}$ and $\|\cdot\|_{\infty}$ are not equivalent.
(3 points)

Solution of problem 2, version $1(5+10+10+5=30$ points $)$
(a) For any $f \in \mathcal{C}([-1,1], \mathbb{K})$ we have that

$$
\|T f\|_{\infty}=\sup _{x \in[-1,1]}|f(|x|)|=\sup _{x \in[0,1]}|f(x)| \leq \sup _{x \in[-1,1]}|f(x)|=\|f\|_{\infty} .
$$

(3 points)

Now take $f \in \mathcal{C}([-1,1], \mathbb{K})$ such that $f(x)=1$ for all $x \in[-1,1]$. Then $\|f\|_{\infty}=1$ and $\|T f\|_{\infty}=1$. We conclude that the operator norm of T is given by

$$
\|T\|=\sup _{f \in \mathcal{C}([-1,1], \mathbb{K}), f \neq 0} \frac{\|T f\|_{\infty}}{\|f\|_{\infty}}=1 .
$$

(2 points)

(b) We have that $T f=0$ if and only if

$$
f(|x|)=0 \quad \text { for all } \quad x \in[-1,1],
$$

or, equivalently,

$$
f(x)=0 \quad \text { for all } \quad x \in[0,1] .
$$

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function

$$
f(x)= \begin{cases}x & \text { if } x<0 \\ 0 & \text { if } x \geq 0\end{cases}
$$

We conclude that $\lambda=0$ is an eigenvalue of T.
(3 points)
We have that $T f=f$ if and only if

$$
f(|x|)=f(x) \quad \text { for all } \quad x \in[-1,1] .
$$

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function $f(x)=x^{2}$. We conclude that $\lambda=1$ is an eigenvalue of T.
(3 points)
(c) Assume that $\lambda \notin\{0,1\}$. If $(T-\lambda) f=g$, then

$$
f(|x|)-\lambda f(x)=g(x) \quad \text { for all } \quad x \in[-1,1],
$$

or, equivalently,

$$
\begin{cases}f(x)-\lambda f(x)=g(x) & \text { if } 0 \leq x \leq 1 \\ f(-x)-\lambda f(x)=g(x) & \text { if }-1 \leq x<0\end{cases}
$$

Solving for f gives

$$
\begin{aligned}
f(x) & =(T-\lambda)^{-1} g(x) \\
& := \begin{cases}\frac{1}{1-\lambda} g(x) & \text { if } 0 \leq x \leq 1 \\
\frac{1}{\lambda}(-g(x)+f(-x))=-\frac{1}{\lambda} g(x)+\frac{1}{\lambda(1-\lambda)} g(-x) & \text { if }-1 \leq x<0 .\end{cases}
\end{aligned}
$$

(5 points)

For all $x \in[0,1]$ it follows that

$$
\left|(T-\lambda)^{-1} g(x)\right| \leq \begin{cases}\frac{1}{|1-\lambda|}\|g\|_{\infty} & \text { if } 0 \leq x \leq 1 \\ \frac{1}{|\lambda|}\|g\|_{\infty}+\frac{1}{|\lambda(1-\lambda)|}\|g\|_{\infty} & \text { if }-1 \leq x<0\end{cases}
$$

so that

$$
\left\|(T-\lambda)^{-1} g(x)\right\|_{\infty} \leq C\|g\|_{\infty},
$$

where

$$
C=\max \left\{\frac{1}{|1-\lambda|}, \frac{1}{|\lambda|}+\frac{1}{|\lambda(1-\lambda)|}\right\} .
$$

Therefore, $(T-\lambda)^{-1}$ is bounded and hence $\lambda \in \rho(T)$. (5 points)

Alternative argument. Since $T-\lambda$ is bijective and $\mathcal{C}([-1,1], \mathbb{K})$ is a Banach space, it follows by a corollary of the Open Mapping Theorem that $(T-\lambda)^{-1}$ is bounded. Therefore, $\lambda \in \rho(T)$.
(5 points)
(d) Recall the following result: if T is compact, then for any eigenvalue $\lambda \neq 0$ the corresponding eigenspace $\operatorname{ker}(T-\lambda)$ is finite-dimensional.

For $\lambda=1$ we have that

$$
\operatorname{span}\left\{x^{2 n}: n \in \mathbb{N}\right\} \subset \operatorname{ker}(T-\lambda)
$$

which shows that ker $(T-\lambda)$ is not finite-dimensional. We conclude that T is not compact.
(5 points; only 4 points when argument is given for $\lambda=0$)
Note. It is important that the argument is given for $\lambda=1$. It is easy to give an example of a compact operator T for which ker T is infinite-dimensional.

Solution of problem 2, version $2(5+10+10+5=30$ points $)$
(a) For any $f \in \mathcal{C}([-1,1], \mathbb{K})$ we have that

$$
\|T f\|_{\infty}=\sup _{x \in[-1,1]}|f(x)+f(-x)| \leq \sup _{x \in[-1,1]}|f(x)|+\sup _{x \in[-1,1]}|f(-x)|=2\|f\|_{\infty} .
$$

(3 points)

Now take $f \in \mathcal{C}([-1,1], \mathbb{K})$ such that $f(x)=1$ for all $x \in[-1,1]$. Then $\|f\|_{\infty}=1$ and $\|T f\|_{\infty}=2$. We conclude that the operator norm of T is given by

$$
\|T\|=\sup _{f \in \mathcal{C}([-1,1], \mathbb{K}), f \neq 0} \frac{\|T f\|_{\infty}}{\|f\|_{\infty}}=2
$$

(2 points)

(b) We have that $T f=0$ if and only if

$$
f(x)+f(-x)=0 \quad \text { for all } \quad x \in[-1,1] .
$$

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function $f(x)=x$. We conclude that $\lambda=0$ is an eigenvalue of T.
(3 points)
We have that $T f=2 f$ if and only if

$$
f(x)+f(-x)=2 f(x) \quad \text { for all } \quad x \in[-1,1],
$$

or, equivalently,

$$
f(x)=f(-x) \quad \text { for all } \quad x \in[-1,1] .
$$

(2 points)

Clearly, there exist nonzero functions f that satisfy this condition. For example, take the function $f(x)=x^{2}$. We conclude that $\lambda=2$ is an eigenvalue of T.
(3 points)
(c) Assume that $\lambda \notin\{0,2\}$. If $(T-\lambda) f=g$, then

$$
(1-\lambda) f(x)+f(-x)=g(x) \quad \text { for all } \quad x \in[-1,1] .
$$

Replacing x by $-x$ gives the equation

$$
f(x)+(1-\lambda) f(-x)=g(-x) \quad \text { for all } \quad x \in[-1,1] .
$$

Therefore, for any $x \in[-1,1]$ can find $f(x)$ by solving the following system:

$$
\left(\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right)\binom{f(x)}{f(-x)}=\binom{g(x)}{g(-x)} .
$$

There is a unique solution if and only if $\lambda \notin\{0,2\}$. In that case, we find that

$$
f(x)=\frac{1-\lambda}{\lambda(\lambda-2)} g(x)-\frac{1}{\lambda(\lambda-2)} g(-x) .
$$

(5 points)

For all $x \in[-1,1]$ it follows that

$$
\left|(T-\lambda)^{-1} g(x)\right|=\left|\frac{1-\lambda}{\lambda(\lambda-2)}\right||g(x)|+\left|\frac{1}{\lambda(\lambda-2)}\right||g(-x)| \leq C\|g\|_{\infty},
$$

where

$$
C=\left|\frac{1-\lambda}{\lambda(\lambda-2)}\right|+\left|\frac{1}{\lambda(\lambda-2)}\right| .
$$

Therefore,

$$
\left\|(T-\lambda)^{-1} g(x)\right\|_{\infty} \leq C\|g\|_{\infty}
$$

which means that $(T-\lambda)^{-1}$ is bounded and hence $\lambda \in \rho(T)$.
(5 points)
Alternative argument. Since $T-\lambda$ is bijective and $\mathcal{C}([-1,1], \mathbb{K})$ is a Banach space, it follows by a corollary of the Open Mapping Theorem that $(T-\lambda)^{-1}$ is bounded. Therefore, $\lambda \in \rho(T)$.
(5 points)
(d) Recall the following result: if T is compact, then for any eigenvalue $\lambda \neq 0$ the corresponding eigenspace $\operatorname{ker}(T-\lambda)$ is finite-dimensional.

For $\lambda=2$ we have that

$$
\operatorname{span}\left\{x^{2 n}: n \in \mathbb{N}\right\} \subset \operatorname{ker}(T-\lambda)
$$

which shows that ker $(T-\lambda)$ is not finite-dimensional. We conclude that T is not compact.
(5 points; only 4 points when argument is given for $\lambda=0$)
Note. It is important that the argument is given for $\lambda=1$. It is easy to give an example of a compact operator T for which ker T is infinite-dimensional.

Solution of problem 3, version 1 (10 points)

Define the following linear operator

$$
T: X \rightarrow \mathcal{C}([0, \pi], \mathbb{K}), \quad T u=u^{\prime \prime}+u
$$

Note that T is bounded:

$$
\begin{aligned}
\|T u\|_{\infty} & =\sup _{x \in[0, \pi]}\left|u^{\prime \prime}(x)+u(x)\right| \\
& \leq\left\|u^{\prime \prime}\right\|_{\infty}+\|u\|_{\infty} \\
& \leq\|u\|_{2} .
\end{aligned}
$$

(3 points)

Since the spaces $\left(X,\|\cdot\|_{2}\right)$ and $\left(\mathcal{C}([0, \pi], \mathbb{K}),\|\cdot\|_{\infty}\right)$ are Banach spaces and it is given that T is bijective, it follows by a corollary of the Open Mapping Theorem that the operator $T^{-1}: \mathcal{C}([0, \pi], \mathbb{K}) \rightarrow X$ is bounded. This means that there exists a constant $C \geq 0$ such that

$$
\left\|T^{-1} f\right\|_{2} \leq C\|f\|_{\infty}
$$

for all $f \in \mathcal{C}([0, \pi], \mathbb{K})$.
(5 points)
Finally, note that u is a solution of the given boundary value problem if and only if $T u=f$, or, equivalently, $u=T^{-1} f$. The boundedness of T^{-1} now gives the desired inequality:

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}+\left\|u^{\prime \prime}\right\|_{\infty}=\|u\|_{2}=\left\|T^{-1} f\right\|_{2} \leq C\|f\|_{\infty} .
$$

(2 points)

Solution of problem 3, version 2 (10 points)

Define the following linear operator

$$
T: X \rightarrow \mathcal{C}([0,1], \mathbb{K}), \quad T u=u^{\prime}+2 x u .
$$

Note that T is bounded:

$$
\begin{aligned}
\|T u\|_{\infty} & =\sup _{x \in[0,1]}\left|u^{\prime}(x)+2 x u(x)\right| \\
& \leq\left\|u^{\prime}\right\|_{\infty}+2\|u\|_{\infty} \\
& \leq 2\|u\|_{1} .
\end{aligned}
$$

(3 points)

Since the spaces $\left(X,\|\cdot\|_{1}\right)$ and $\left(\mathcal{C}([0,1], \mathbb{K}),\|\cdot\|_{\infty}\right)$ are Banach spaces and it is given that T is bijective, it follows by a corollary of the Open Mapping Theorem that the operator $T^{-1}: \mathcal{C}([0,1], \mathbb{K}) \rightarrow X$ is bounded. This means that there exists a constant $C \geq 0$ such that

$$
\left\|T^{-1} f\right\|_{1} \leq C\|f\|_{\infty}
$$

for all $f \in \mathcal{C}([0,1], \mathbb{K})$.
(5 points)
Finally, note that u is a solution of the given initial value problem if and only if $T u=f$, or, equivalently, $u=T^{-1} f$. The boundedness of T^{-1} now gives the desired inequality:

$$
\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}=\|u\|_{1}=\left\|T^{-1} f\right\|_{1} \leq C\|f\|_{\infty} .
$$

(2 points)

Solution of problem 4, version $1(10+5=15$ points)
(a) Proof of (i) \Rightarrow (ii). Assume that T is bounded. Let $\left(x_{n}\right)$ be a sequence such that $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$. Then it follows that

$$
\|y\|=\left\|y-T x_{n}+T x_{n}\right\| \leq\left\|y-T x_{n}\right\|+\left\|T x_{n}\right\| \leq\left\|y-T x_{n}\right\|+\|T\|\left\|x_{n}\right\| .
$$

Since the right-hand side tends to zero, it follows that $y=0$.
(5 points)
Proof of (ii) \Rightarrow (i). Assume that $x_{n} \rightarrow x$ and $T x_{n} \rightarrow y$. Introduce the new sequence $z_{n}=x_{n}-x$. Then it follows that $z_{n} \rightarrow 0$ and $T z_{n} \rightarrow y-T x$. By assumption it follows that $y-T x=0$ so that $y=T x$. We conclude that the graph of T is closed. Since X and Y are Banach spaces we can apply the Closed Graph Theorem with $V=X$ to conclude that T is bounded.
(5 points)
(b) Let $z \in X$ be arbitrary, and let $\left(x_{n}\right)$ be a sequence in X such that $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$. On the one hand, we have that

$$
\left(T x_{n}, z\right)=\left(x_{n}, T z\right) \rightarrow 0 .
$$

On the other hand, we have that

$$
\left(T x_{n}, z\right) \rightarrow(y, z) .
$$

(3 points)

By uniqueness of limits, we conclude that $(y, z)=0$. Since $z \in X$ was arbitrary, it follows that $y \in X^{\perp}=\{0\}$ so that $y=0$. By part (a) we conclude that T is bounded.
(2 points)

Solution of problem 4, version $2(10+5=15$ points)
(a) Identical to version 1.
(b) Let $z \in X$ be arbitrary, and let $\left(x_{n}\right)$ be a sequence in X such that $x_{n} \rightarrow 0$ and $T x_{n} \rightarrow y$. On the one hand, we have that

$$
\left|\left(T x_{n}, z\right)\right| \leq\left\|x_{n}\right\|\|z\| \rightarrow 0 .
$$

On the other hand, we have that

$$
\left(T x_{n}, z\right) \rightarrow(y, z) .
$$

(3 points)

By uniqueness of limits, we conclude that $(y, z)=0$. Since $z \in X$ was arbitrary, it follows that $y \in X^{\perp}=\{0\}$ so that $y=0$. By part (a) we conclude that T is bounded.
(2 points)

Solution of problem 5, version 1 (10 points)

For all $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ we have that

$$
\begin{aligned}
& |f(x)|=\left|7 x_{1}-3 x_{2}\right| \leq 7\left|x_{1}\right|+3\left|x_{2}\right| \leq 7\|x\|_{1}, \\
& |g(x)|=\left|7 x_{1}+5 x_{2}\right| \leq 7\left|x_{1}\right|+5\left|x_{2}\right| \leq 7\|x\|_{1} .
\end{aligned}
$$

For $x=(1,0)$ we have $\|x\|_{1}=1$ and $|f(x)|=|g(x)|=7$. We conclude that

$$
\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{1}}=7 \quad \text { and } \quad\|g\|=\sup _{x \neq 0} \frac{|g(x)|}{\|x\|_{1}}=7 .
$$

(4 points)

For $x=(0,1)$ we have that $f(x)=-3$ and $g(x)=5$, so $f \neq g$.
(1 point)
With $V=\operatorname{span}\{(1,0)\}$ we have $f(x)=g(x)$ for all $x \in V$.
(1 point)
Define the linear map $h: V \rightarrow \mathbb{R}$ by $h(x)=f(x)$. It easily follows that $\|h\|=7$. Both f and g are norm preserving extensions of h. This implies that norm preserving extensions, of which the existence is guaranteed by the Hahn-Banach Theorem, need not be unique.
(4 points)

Solution of problem 5, version 2 (10 points)

For all $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ we have that

$$
\begin{aligned}
|f(x)| & =\left|5 x_{1}+3 x_{2}\right| \leq 5\left|x_{1}\right|+3\left|x_{2}\right| \leq 8\|x\|_{\infty}, \\
|g(x)| & =\left|3 x_{1}+5 x_{2}\right| \leq 3\left|x_{1}\right|+5\left|x_{2}\right| \leq 8\|x\|_{\infty} .
\end{aligned}
$$

For $x=(1,1)$ we have $\|x\|_{\infty}=1$ and $|f(x)|=|g(x)|=8$. We conclude that

$$
\|f\|=\sup _{x \neq 0} \frac{|f(x)|}{\|x\|_{\infty}}=8 \quad \text { and } \quad\|g\|=\sup _{x \neq 0} \frac{|g(x)|}{\|x\|_{\infty}}=8 .
$$

(4 points)

For $x=(1,0)$ we have that $f(x)=3$ and $g(x)=5$, so $f \neq g$.
(1 point)
With $V=\operatorname{span}\{(1,1)\}$ we have $f(x)=g(x)$ for all $x \in V$.
(1 point)
Define the linear map $h: V \rightarrow \mathbb{R}$ by $h(x)=f(x)$. It easily follows that $\|h\|=8$. Both f and g are norm preserving extensions of h. This implies that norm preserving extensions, of which the existence is guaranteed by the Hahn-Banach Theorem, need not be unique.
(4 points)

